Review Task
 Year 8

Mathletics

Linear Relationships:

Graphing using the intercept and gradient
a $y=2 x+3$
(b) $y=-3 x+1$

Simplifying Algebra:

(a) $\left(j^{2}\right)^{5}=j^{2} \times j^{2} \times j^{2} \times j^{2} \times j^{2}$
$=j^{2+2+2+2+2}$
$=j^{10}$
$\left(j^{2}\right)^{5}=j^{2 \times 5}$
$=j^{10}$

$$
\text { (b) } \begin{aligned}
\left(b^{3}\right)^{3} & =b^{3} \times b^{3} \times b^{3} \\
& =b^{3+3+3} \\
& =b^{9} \\
\left(b^{3}\right)^{3} & =b^{3 \times 3} \\
& =b^{9}
\end{aligned}
$$

C $\left(r^{4}\right)^{0.5}=r^{4 \times 0.5}$
$=r^{2}$
d $\left(x^{-2}\right)^{-4}=x^{-2 \times-4}$
$=x^{8}$

Review Task Year 8

Percentage Calculations:

a $(15.3 \div 22.5) \times 100 \%=68 \%$
(b) $(13.05 \div 22.5) \times 100 \%=58 \%$
$(18.225 \div 22.5) \times 100 \%=81 \%$
d $(16.825 \div 22.5) \times 100 \%=75 \%$

Pencil type

HB

Pencil type

3 H

Pencil type

5B

Pencil type
3B

Straight Lines:

This curvy optical illusion is made using lots of lines that have different slopes.

a The robot standing on the x-axis at point A needs to get to point B on the y-axis. The solar panels only have enough stored energy to travel the shortest straight line path. Write down the rule of the line the robot needs to follow to get from A to B.

Review Task Year 8

Rates and Ratios:

a 4 kg of fish for $\$ 24.00$ or 8 kg of fish for $\$ 50$?

$(4 \mathrm{~kg}$ for $\$ 24.00) \times 2=8 \mathrm{~kg}$ for $\$ 48.00$
$\therefore 4 \mathrm{~kg}$ of fish for $\$ 24.00$ is the best buy.

C 5 sets of guitar strings for $\$ 78.75$ or 7 sets of guitar strings for $\$ 110.95$?

(b) 3 sacks of potatoes for $\$ 14$ or
 4 sacks of potatoes for $\$ 17$?

(3 sacks for $\$ 14.00) \times 4=12$ sacks for $\$ 56.00$
(4 sacks for $\$ 17.00$) $\times 3=12$ sacks for $\$ 51.00$
$\therefore 4$ sacks for $\$ 17.00$ is the best buy.
d 8 loaves of sourdough bread for $\$ 41.60$ or 25 loaves of sourdough bread for $\$ 131.25$?

Pythagoras' Theorem:

Calculating the length of the hypotenuse

a $c^{2}=6^{2}+8^{2}$
$\therefore c^{2}=36+64$
(b) $g^{2}=8^{2}+15^{2}$
$\therefore c^{2}=100$
$\therefore c=\sqrt{100}$
$\therefore g^{2}=64+225$
$\therefore c=10$
$\therefore g^{2}=289$
$\therefore g=\sqrt{289}$
$\therefore \quad g=17$

