Algebra Basics

Curriculum Ready
ACMNA: 133, 175, 176, 177, 179

Copyright © 2009 3P Learning. All rights reserved.
First edition printed 2009 in Australia.
A catalogue record for this book is available from 3P Learning Ltd.
ISBN 978-1-921861-24-6

Ownership of content The materials in this resource, including without limitation all information, text, graphics, advertisements, names, logos and trade marks (Content) are protected by copyright, trade mark and other intellectual property laws unless expressly indicated otherwise.
You must not modify, copy, reproduce, republish or distribute this Content in any way except as expressly provided for in these General Conditions or with our express prior written consent.

Copyright Copyright in this resource is owned or licensed by us. Other than for the purposes of, and subject to the conditions prescribed under, the Copyright Act 1968 (Cth) and similar legislation which applies in your location, and except as expressly authorised by these General Conditions, you may not in any form or by any means: adapt, reproduce, store, distribute, print, display, perform, publish or create derivative works from any part of this resource; or commercialise any information, products or services obtained from any part of this resource.

Where copyright legislation in a location includes a remunerated scheme to permit educational institutions to copy or print any part of the resource, we will claim for remuneration under that scheme where worksheets are printed or photocopied by teachers for use by students, and where teachers direct students to print or photocopy worksheets for use by students at school. A worksheet is a page of learning, designed for a student to write on using an ink pen or pencil. This may lead to an increase in the fees for educational institutions to participate in the relevant scheme.

Published 3P Learning Ltd
For more copies of this book, contact us at: www.3plearning.com/contact/
Designed 3P Learning Ltd
Although every precaution has been taken in the preparation of this book, the publisher and authors assume no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of this information contained herein.

Fill in the spaces with anything you already know about Algebra

Career

Opportunities:

Architects, electricians, plumbers, etc. use it to do important calculations.

Q Triangles have been stacked to form an increasing number pattern below:

7 triangles

12 triangles

17 triangles

How many small triangles would be needed to make the $15^{\text {th }}$ picture in this pattern?

1

Words and symbols

Algebra uses letters or symbols called variables. Each part in an algebraic expression is called a term.

Look at the algebraic expression $4-a$

if a is 1 , the outcome is 3
If a is 8 , the outcome is -4

Let's look at another similar expression.
$m+9$

If m is 3 , the outcome is 12
If m is -4 , the outcome is 5

Algebraic expressions with an equals sign ' $=$ ' are called equations.

```
4+x=7
```


To make this correct, x must be 3

Here's another one.
$m-5=9$

To make this correct, m must be 14

Words and symbols

1 Write down the variable in each of the following mathematical statements:
a $12+b$
b $3-m+2$
C $7 \times k+3$
d $2 a+3 a$
2. Circle each of the algebraic expressions below in which the variable can be any value:

$$
5 \times w=30 \quad x \div x=1
$$

$$
32-2 \times d=16
$$

$3+x=$
$12 \times g=$
$200 \div s=25$
$3 \times x+6=$

3 Match up each of the algebraic expressions with the correct outcome using the given variable value:

$$
\begin{aligned}
11-x \text { if } x=4 & \bullet \\
4 \times m \text { if } m=5 & \bullet \\
27 \div a \text { if } a=3 & \bullet \\
1+3 \times z \text { if } z=3 & \bullet \\
& \bullet 7
\end{aligned}
$$

4 Write down the value of the variable that makes these equations equal on both sides:
(a) $12+c=20$
(b) 1
$14-h=2$

$$
h=
$$

C $k \div 3=6$
(d) $12 x y=72$
$y=$

How does it work?

Algebra Basics

Multiplication

Instead of writing $5 \times m$ or $a \times b$, we simply write $5 m$ or $a b$ to mean the exact same thing!
Always put the number first.
Simplify $3 \times 2 \times n$

$$
\begin{array}{rlr}
3 \times 2 \times n & =6 \times n \quad \text { Multiply the numbers together } \\
& =6 n &
\end{array}
$$

If multiplying by 1 , do not write 1 in front of the variable.
Simplify $1 \times y$

$$
1 \times y=y \quad(\text { not } 1 y) \quad \text { The } 1 \text { is hidden }
$$

1×2 is just 2 . The same rule applies when multiplying a variable by 1

Write multiplied variables in alphabetical order.
Simplify $2 \times p \times 5 \times r \times q$

$$
\begin{aligned}
2 \times p \times 5 \times r \times q & =2 \times 5 \times p \times r \times q & & \text { Re-order with numbers first } \\
& =10 \times p \times r \times q & & \text { Multiply the numbers first } \\
& =10 p q r & & \text { Put variables in alphabetical order }
\end{aligned}
$$

Use powers to simplify multiplications of the same variable.
Simplify $a \times a \times b$

$$
\begin{aligned}
a \times a \times b & =a^{2} \times b \\
& =a^{2} b
\end{aligned}
$$

Just like 4×4 is $4^{2}, a \times a$ is a^{2}

Doing the opposite of these examples is called expanding.

$a b=a \times b$

Write $a^{2} b$ in expanded form

Multiplication

(1) Simplify: (psst: remember the rules!)
a $2 \times 7 \times k$
(b) $u \times 1$
C $5 \times r \times p$

d $n \times m \times m$
e $6 \times b \times 3 \times b$
f $4 \times j \times l \times 3 \times k$

2 Expand each of these
(a) $4 p q$
(b) $4 a^{2}$
C $3 m^{2} n$
(3) It's combo time! Calculate the value of these expressions using the variable in the square brackets.
a $3 x+2 \quad[x=4]$
(b) $15-2 b \quad[b=6]$
C $3 \times 5 \mathrm{~g} \quad[\mathrm{~g}=2]$
(d) $4 m^{2}[m=3]$

Division

When dividing two algebraic terms it sometimes helps to write the division as a fraction first.

Simplify $h \div 8$

$$
\therefore h \div 8=\frac{h}{8}
$$

Aways write fractions in simplest form.
Simplify $4 x \div 12$

$$
\begin{aligned}
\therefore 4 x \div 12 & =\frac{4 x}{12} \\
& =\frac{x}{3} \quad \frac{4}{12}=\frac{1}{3} \text { when simplified }
\end{aligned}
$$

Brackets are not necessary for simple divisions written in fraction form.
Simplify $(3+m) \div n$

$$
\therefore(3+m) \div n=\frac{3+m}{n} \quad \text { brackets are hidden in fraction form }
$$

When doing the reverse and there is more than one term, brackets must be put in.

$$
\therefore \frac{y}{4+x}=y \div(4+x)
$$

Division

(1) Simplify by writing without using a division sign:
(a) $2 \div d$
(b) $a \div c$

C $5 \div(r+3)$
(d) $(y+z) \div z$

2 Re-write these expressions using a division sign: (psst: some may need brackets)
a $\frac{w}{4}$
(b) $\frac{c}{3+a}$
c $\frac{6}{3 x+2}$
d $\frac{x-y}{v+w}$

3 Re-write these expressions using a division sign: (psst: simplify the fractions first)
a $\frac{2 a}{6}$
b $\frac{6 b}{12 c}$
C $\frac{15 x}{20 y}$
d $\frac{4(m+n)}{12 p}$

It's combo time!
(1) Simplify these by writing without multiplication or division signs:

(a) $5 \times a \div 4$
(b) $1 \times m \div(4+n)$

C $n \times m \div(b \times a \times c)$
(d) $(8 \times 2 p) \div(3 \times 3 q)$
(e) $x \times x \div(y+2 x)$
(f) $d \times f \times d \div(11+f \times e)$
2. Expand these by re-writing with multiplication/division signs and grouping symbols:
a $\frac{2 d}{3}$
(b) $\frac{a+4}{b}$
C $\frac{q-r}{9 q}$
d $\frac{l^{2}}{j-k}$
e $\frac{5 b^{2}}{a^{2}+2 b}$
(1) $\frac{7 x y z}{x+7 y}$

Phrases as algebraic expressions

To solve problems with algebra we use variables to turn the problem into an algebraic rule (or relationship).

Write a rule for: the sum of a number and 5

- Give 'the number' a variable.

Let the number be n
\therefore The sum of a number and 5 is: $n+5$

Write a rule for: the difference between a number and 3
minus Let the number be n
$\therefore n-3$

The order of the words in a sentence makes a difference to which operation is done first.
Write a rule for: the difference between double a number and 3

Let the number be n

$$
\therefore 2 n-3
$$

\therefore a number doubled, minus 3

Write a rule for: double the difference between a number and 3 multiply by 2 minus Let the number be n

$$
\therefore 2(n-3) \quad \text { Brackets used because } n-3 \text { is calculated first }
$$

\therefore double the difference between a number and 3

Write a rule for: the quotient of 4 times a number and 3
numerator denominator
$\therefore \frac{4 n}{3} \quad 4 n$ was first in the sentence, so it is the numerator

Phrases as algebraic expressions

(1) Write these phrases as algebraic expressions (let the number be ' n ')
(a) The sum of a number and 7:

b The difference between 9 and a number:

C The sum of 6 times a number and 1:
d The product (x) of a number and 4:
e The quotient (\div) of two more than a number and 3 :
(1) The difference between a number squared and 6:
(8) The product of a number minus 5 and 2 :
b 8 less than twice a number:
(i) 10 added to a number halved:
(i) A number multiplied by 5 more than itself:

Phrases as algebraic expressions

2 Circle whether the algebraic expression is correct or incorrect for each phrase.
a A number multiplied by 4 added to 7 :

$$
4 n+7
$$

(b) The difference between a number and 4:

Correct Incorrect

$$
4-n
$$

C The sum of 6 and the product of 3 and a number:
Correct Incorrect

$$
3 n+6
$$

d The quotient of 4 plus a number and 9 :
Correct Incorrect

$$
4 \div(n+9)
$$

(e) A number divided by 5 and added to the number:

Correct Incorrect

$$
\frac{n}{5}+5
$$

(f) A number times the difference between the number and one:

Correct Incorrect

$$
n(n-1)
$$

8 The sum of a number, and three minus the number halved:
Correct Incorrect

$$
n+\frac{3-n}{2}
$$

(h) The product of 6 more than twice a number and 4:

Correct Incorrect

$$
4(2 n+6)
$$

(i) The product of a number squared and 3:

Correct Incorrect
$(3 n)^{2}$
(i) The quotient of 5 less than a number and the number:

Correct Incorrect

$$
\frac{n-5}{n}
$$

Addition and subtraction

If the variable parts are exactly the same, the terms are called 'like terms'.

Like terms: $\stackrel{x}{4}$ Like terms $-\underset{\sim}{-x}$
$\stackrel{3 b}{4}$ Like terms $\stackrel{b}{-}$
$\stackrel{2 y}{4}-5 y$

Not Like terms:

$\sim_{\text {Not like terms }-}^{p}$

Only 'like terms' can be added or subtracted.
Simplify $2 a+a$

$$
\therefore 2 a+a=3 a
$$

Simplify $8 x-3 x$

$\therefore 8 x-3 x=5 x$

Simplify $3 d+4 d+6 c$

$$
\begin{gathered}
3 d+4 d+6 c \\
\uparrow \uparrow \\
\text { like terms } \\
3 d+4 d+6 c=7 d+6 c
\end{gathered}
$$

Why don't we add or subtract unlike terms? Good Question!
Let's look at a problem the last example could represent.
At a picnic for pets, each dog gets 7 treats and each cat gets 6 treats. Number of treats needed is: (7 treats \times number of dogs) $+(6$ treats \times number of cats $)$

d and c represent two different animals so it does not make sense to add them together.
Therefore $7 d+6 c$ is the simplest expression for this problem.
(1) Simplify:
(a) $a+9 a$
(b) $3 u+5 u$
C $14 r-9 r$
(d) $4 g-7 g$
e $6 m-8 m$
f $-11 x+2 x$
(8) $7 y+2 y+4 y$
(b) $30 p-15 p-10 p$

2 Simplify: (psst: look for the like terms!)
(a) $13 m+9 n+12 m$
(b) $14 a+b+10 b$

C $16 x+9 y+15 y$
d $9 d-5 c-3 d$
e $7 e+11 e+2 a$
(f) $13 g-15 g-4 h$

Grouping like terms

Same character but not alike
Simplify $7 a+3 a^{2}+a+2 a^{2}$

- a is different to a^{2} so they are not like terms.

Grouping the like terms

$$
=8 a+5 a^{2}
$$

Each term of an expression includes the sign in front of it.
Simplify $9 j-11 k+5 j+8 k$

It's helpful to circle the like terms with similar shapes, including the sign in front.

Here are two more examples that combine two simplifying concepts.
Simplify and write in fraction form: $(5 a+4 b-2 a) \div 3 b$

$$
\begin{aligned}
(5 a)+4 b-2 a) \div 3 b & =(3 a+4 b) \div 3 b & & \text { Simplify the bracket } \\
& =\frac{3 a+4 b}{3 b} & & \text { Write division as a fraction }
\end{aligned}
$$

Simplify each bracket and write in fraction form: $\left(x-2 x^{2}+8 x\right) \div\left(13 x^{2}+8 x^{2}-5 x\right)$

$$
\begin{aligned}
\left(x-2 x^{2}+8 x\right) \div\left(\boxed{13 x^{2}}+8 x^{2}-5 x\right) & =\left(9 x-2 x^{2}\right) \div\left(21 x^{2}-5 x\right) & & \text { Simplify the bracket } \\
& =\frac{9 x-2 x^{2}}{21 x^{2}-5 x} & & \text { Write division as a fraction }
\end{aligned}
$$

(1) Simplify: (psst: look for the like terms!)
a $9 a+3 b+a+4 b$
(b) $4 p^{2}+3 p+19 p+7 p^{2}$

C $n-11 m-n-12 m$
d $3 y-5 x+y-8 x$
(e) $9 p-4 q+3 p+12 q$
(f) $14 a^{2}+4 b-3 a+2 a^{2}$

Combo time!

2. Simplify and write in fraction form:
a $11 y \div(2 y+2 x-y)$
(b) $\left(7 p^{2}-5 p-8 p^{2}\right) \div 12$

3 Simplify each bracket and write in fraction form:
a $(2 x-3 y+2 x) \div(4 x+3 x-2 y)$
(b) $(2 \times 4 a+3 \times 2 b) \div\left(3 \times a \times a+2 a^{2}\right)$

Escape from Algebra Island puzzle

One path has been found for you!
$\left[\left(\left[\left(4 x^{2}+4 x^{2}\right)-5 x^{2}\right] \div 1\right) \div 3 x\right] \times 2=2 x$

Square steps = multiply
Circle steps = divide
$\left.\begin{array}{l}\text { Trapezium steps = add } \\ \text { Pentagon steps = subtract }\end{array}\right\}$ Remember, like terms only!
Starting with a value of $4 x^{2}$, travel along the lines from step to step until you get to the outer edge.
Each step affects your value.
If you have exactly $2 x$ left when you reach one of the shapes at the outer edge, then you have escaped! Good luck.

How many paths can you find to get away from Algebra Island?
How many steps is the longest path you can find?

Bringing all the previous concepts together

These examples combine the different simplifying concepts together.

Calculate the value of $4 a \div 3$ when $a=6$

- When $a=6,4 a=4 \times 6$, not 46 !

This is useful in questions with multiple variables.

The fancy name given to doing this sort of thing in Mathematics is substitution.
Calculate the value of $5 x+2 y$ when $x=2$ and $y=6$

$$
\begin{aligned}
5 x+2 y & =5 \times \underset{x=2}{2}+2 \times 6 \quad \text { Substitute the value of the variables. } \\
& =10+12 \\
& =22
\end{aligned}
$$

Where possible, simplify the expression first before substituting in the variable values.
Evaluate $4 m+3 n-2 m+5 n$ when $m=6$ and $n=-3$

$$
\begin{array}{lll}
-4 m & \text { Simplify: } & -3 n-2 m+5 n \\
& =4 m-2 m+3 n+5 n & \text { Identify the like terms and their sign } \\
& =2 m+8 n & \text { Group the like terms } \\
& & \text { Simplify }
\end{array}
$$

How does it work?

The same variable value can be substituted into unlike terms.
Evaluate $3 p^{2}+8 p-p^{2}-3 p$ when $p=2$

- Simplify: $\quad 3 p^{2}-8 p-p^{2}-3 p \quad$ Identify the like terms and their sign

$$
\begin{array}{ll}
=3 p^{2}-p^{2}+8 p-3 p & \text { Group the like terms } \\
=2 p^{2}+5 p & \text { Simplify by combining the like terms }
\end{array}
$$

- Evaluate: $\quad 2 p^{2}+5 p=2 \times{\underset{\sim}{2}}_{2}^{2}+5 \times \underset{\sim}{2} \quad$ Substitute in the variable value

$$
\begin{aligned}
& =2 \times 4+5 \times 2 \\
& =8+10 \\
& =18
\end{aligned}
$$

Checkout these two extra examples...

```
Evaluate \(\frac{2 x+y}{3 x}\) when \(x=3\) and \(y=12\)
```

numerator
denominator

$$
\begin{array}{rlrl}
& & \\
\frac{2 x+y}{3 x} & =\frac{2 \times 3+12}{3 \times 3} & & \\
& =\frac{6+12}{9} & & \text { Substitute in the variable values } \\
& =\frac{18}{9} \quad(18 \div 9) & & \text { Simplify the numerator and denominator } \\
& &
\end{array}
$$

Evaluate $2 m^{2} n$ when $m=2$ and $n=7$

$$
2 m^{2} n=2 \times m^{2} \times n \quad \text { Expanded form }
$$

- Evaluate:

$$
\begin{array}{rlr}
2 \times m^{2} \times n= & 2 \times 2^{2} \times{ }^{7} \quad \text { Substitute in the variable values } \\
& =2 \quad \text { Multiply terms together } \\
& =2 \times 4 \times 7 \\
& =56 &
\end{array}
$$

1 Calculate the value of these expressions when $v=4$
a $4 v+2$
(b) $24 \div 2 v$
C $10-\frac{v}{4}$
d $\frac{2 v+6}{7}$
2. Calculate the value of these expressions when $a=-2$ and $b=5$
(a) $a+2 b$
(b) $3 b-6 a$
C $\frac{24}{a+b}$
(d) $\frac{a^{2} b}{4}$

3 Evaluate these expressions when $c=6, d=9$
a $c+d+2 c+3 d$
(b) $2 c+d+3 c-d$
c $\frac{2 d-c}{d-c}$
(d) $(c+d) \times(2 c-d)$

Bringing all the previous concepts together

Give these three variable questions a go!
(4) Evaluate these expressions when $x=6, y=3$ and $z=-8$
a $2 x+y+z$
(b) $3 z+x y$

C $x^{2}-y z$
d $\frac{4 y}{x+z}$

Earn an Awesome passport stamp with these questions:
(5) Evaluate $\frac{a(a+2 b)^{2}}{(b-a)^{2}}$ when $a=2, b=-4$

6 Evaluate $\left[\frac{(x-y)^{2}}{(y-x)^{2}}\right]^{2}$ when $x=-1, y=-5$

Where)does it work?

Tables of values

These are used to show how one variable changes when another variable in a given rule is changed.

Complete the table of values using the rule: $b=a+3$

a	0	1	2	3	4	5
b						

- Substitute each value of a into the rule to find b

a	0	1	2	3	4	5
b	3	4	5	6	7	8

Complete the table of values using the rule: $y=\frac{x}{3}$

x	3	6	9	12	15	18
y	1	2	3	4	5	6
	$\begin{aligned} & \\ & \hline x=3 \\ & \therefore y=3 \div 3 \\ &=1 \end{aligned}$	$\begin{aligned} & \uparrow \\ x & =6 \\ \therefore y & =6 \div 3 \\ y & =2 \end{aligned}$	$\begin{aligned} & \uparrow \\ & x=9 \\ & \therefore y=9 \div 3 \\ & y=3 \end{aligned}$	$\begin{aligned} & 4 \\ & x=12 \\ & \therefore y=12 \div 3 \\ & y=4 \end{aligned}$	$\begin{aligned} & \uparrow \\ x & =15 \\ \therefore y & =15 \div 3 \\ y & =5 \end{aligned}$	$\begin{aligned} & \uparrow \\ x & =18 \\ \therefore y & =18 \div 3 \\ y & =6 \end{aligned}$

Complete the table of values using the rule: $m=3 n-1$

n	0	1	2	3	4	5
m	-1	2	5	8	11	14
	$\begin{aligned} & \uparrow \\ n & =0 \\ \therefore m & =3 \times 0-1 \\ & =-1 \end{aligned}$	$\begin{aligned} & \uparrow \\ n & =1 \\ \therefore m & =3 \times 1-1 \\ & =2 \end{aligned}$	$\begin{aligned} & \uparrow \\ & n=2 \\ & \therefore m=3 \times 2-1 \\ &=5 \end{aligned}$	$\begin{aligned} & \uparrow \\ & n=3 \\ & \therefore m=3 \times 3-1 \\ &=8 \end{aligned}$	$\begin{aligned} & \uparrow \\ n & =4 \\ \therefore m & =3 \times 4-1 \\ & =11 \end{aligned}$	$\begin{aligned} & \uparrow \\ n & =5 \\ \therefore m & =3 \times 5-1 \\ & =14 \end{aligned}$

Where does it work?

Table of values

1. Complete each table of values using the given rule.
a $u=v+2$
(b) $c=2 d$

v	0	1	2	3	4
u					

d	0	1	2	3	4
c					

C $g=4 h-3$
(d) $y=\frac{x}{2}+1$

h	1	2	3	4	5
g					

x	2	4	6	8	10
y					

(2) Draw lines to match each table of values with the correct matching rule.

a	0	2	4	6	8
b	2	3	4	5	6

- $b=2 a+3$

a	1	2	3	4	5
b	1	6	11	16	21

- $b=\frac{a+4}{2}$

a	0	1	2	3	4
b	0	3	6	9	12

- $b=3 a$

a	0	1	2	3	4
b	3	5	7	9	11

- $b=5 a-4$
(3) Have a go at figuring out the rule used for each table of values below and fill in the gaps.

a Rule:

x	0	1	2	3	4
y	5	6			9

C Rule:

p	0	1	2	3	4
q	-3		-1		1

(b) Rule:

m	0	1	2	3	4
n	0	4		12	

(d) Rule:

c		1		5	6
d	-5	-1	3		19

Where does it work?

Number patterns

There are a lot of patterns in the world and it is a useful skill to be able to work them out.
" , ..." at the end means the diagrams continue to change following the same pattern.
Look at the following patterns of bricks laid by a builder over a three minute period:

(i) Describe the number pattern of bricks laid by the builder every minute:

Pattern: The builder lay's three bricks in the first minute and then another 3 every minute thereafter
(ii) Write a number pattern for the total number of bricks laid after every minute:

Number Pattern: 3 , $6,9, \ldots$

The number pattern formed can be displayed using a table of values:
Look at the increasing arrow sign pattern below:

,

(i) Describe the number pattern formed by the arrow signs:

Pattern: The first sign has three arrows, then each following sign increases by two arrows
(ii) Complete a table of values for the first three arrow signs:

Sign number	1	2	3
Number of arrows	3	5	7

Number pattern for the arrows used in each sign increases by two arrows each time.
(iii) How many arrows would be in the $6^{\text {th }}$ sign of the pattern?

First six values in the number pattern are:

\therefore there would be 13 arrows in the $6^{\text {th }}$ sign

Where does it work?

Your Turn

Number patterns

(1) For each of these pattern diagrams:
(i) Describe the number pattern formed by the shapes
(ii) Write a number pattern for the total number of shapes used to make the first five diagrams
a

(i)
(ii) \qquad
\qquad
\qquad
\qquad
\qquad , ,..
b

(i)
(ii) \qquad , \qquad , \qquad , \qquad
\qquad , ...
c

,

(i)
(ii) \qquad , \qquad , \qquad , \qquad , \qquad

Where does it work?

Your Turn

Number patterns

2. For each of these pattern diagrams:
(i) Complete a table of values for the first 4 diagrams
(ii) Write down how many shapes are needed for the $7^{\text {th }}$ diagram

©

$1^{\text {st }}$

$2^{\text {nd }}$

$3^{\text {rd }}$

(i)

Diagram number	1	2	3	4
Number of hearts				

(ii) Number of hearts needed for the $7^{\text {th }}$ diagram $=$ \qquad
b

$1^{\text {st }}$

$2^{\text {nd }}$

(i)

Diagram number	1	2	3	4
Number of hexagons				

(ii) Number of hexagons needed for the $7^{\text {th }}$ diagram $=$ \qquad
C

(i)

Diagram number	1	2	3	4
Number of matchsticks				

(ii) Number of matchsticks needed for the $7^{\text {th }}$ diagram $=$ \qquad

Where does it work?

Modelling number patterns

Modelling a number pattern is the fancy way Mathematicians say: 'find the algebra rule for the pattern'.

These examples use the number of shapes and matchsticks in each pattern to find the rule.
Find the algebraic rule for the matchstick pattern below:

Pattern: Starting with 3 matchsticks, the number of matchsticks goes up by 3 with each triangle added on
\therefore The number of matchsticks in each diagram equals $3 \times$ the number of triangles in the diagram
Using algebra, this is: $m=3 t$ The general rule
Completing a table of values can help to find the general rule:

Number of triangles (t)	1	2	3
Number of matchsticks (m)	3	6	9
	$\underbrace{}_{3}$		

Find the general rule for this pattern formed using matchsticks

Number of triangles (t) :
5 ,

3
7

4
$9 \quad$,...

Pattern: Starting with 5 matchsticks, the matchsticks increase by 2 for each extra triangle added on

Checking with the first shape, this time we need to put +1
into the rule to get the correct number of matchsticks

$$
\therefore m=2 t+1 \quad \text { The general rule }
$$

Where does it work?

Modelling number patterns

Write down the general rule for each of the following matchstick number patterns:
1

Let s be the number of squares and m the number of matchsticks

Number of squares (s)			
Number of matchsticks (m)			

General rule:
$m=\square \times s+\square$

2

Let t be the number of triangles and m the number of matchsticks

Number of triangles (t)			
Number of matchsticks (m)			

General rule:
$m=\square t+\square$
(3)
 , ,...

Let r be the number of grey rings and c the number of circles drawn

Number of grey rings (r)	1		
Number of circles drawn (c)	2		

General rule:
$c=\square r+\square$

4

Let p be the number of pentagonal shapes and t the number of triangles used

Number of pentagonal shapes (p)			
Number of triangles (t)			

General rule:
$t=\square p$

Where does it work?

Algebra Basics

More number pattern modelling

The diagram number ($n^{\text {th }}$ diagram) and the number of shapes in each diagram is used for these questions.
Find the general rule for this pattern formed using pentagons

Pattern: Starting with 2 pentagons, the number of pentagons goes up by 3 for each following diagram

Checking with the first shape, we need to put -1 into the rule to get the correct number of pentagons

$$
\therefore p=3 n-1 \quad \text { The general rule }
$$

This method also works for matchstick patterns.
Find the general rule for this pattern formed using matchsticks

,

$n^{\text {th }}$ diagram (n)	$1^{\text {st }}$
matchsticks (m) used:	4

$2^{\text {nd }}$
10
,
$3^{\text {rd }}$
16
,...
,...

Pattern: Starting with 4 matchsticks, the number of matchsticks goes up by 6 for each following diagram

-Multiply n by 6: $\quad \therefore m=6 n$
Checking with the first pattern, we need to put -2 into the rule to get the correct number of matchsticks

$$
\therefore m=6 n-2 \quad \text { The general rule }
$$

Where does it work?

More number pattern modelling

1 Write down the general rule for each of the following matchstick number patterns:
a

$1^{\text {st }}$

$2^{\text {nd }}$

$3{ }^{\text {rd }}$

Let n be the diagram number and m the number of matchsticks

Diagram number (n)			
Number of matchsticks (m)			

General rule:
$m=\square \times n+\square$
b

Let n be the diagram number and m the number of matchsticks

Diagram number (n)			
Number of matchsticks (m)			

General rule:
$m=\square n+\square$
c

Let n be the diagram number and m the number of matchsticks

Diagram number (n)			
Number of matchsticks (m)			

General rule:
$m=\square n+\square$
d

$1^{\text {st }}$

$2^{\text {nd }}$

$3{ }^{\text {rd }}$

Let n be the diagram number and m the number of matchsticks

Diagram number (n)			
Number of matchsticks (m)			

General rule:
$m=\square n \square \square$

More number pattern modelling

2 Write down the general rule for each of the following number patterns:
a

Let s be the number of snow flakes and n the $n^{\text {th }}$ diagram

Diagram number (n)			
Number of snow flakes (s)			

General rule:
$s=\square \times n$
b

$1^{\text {st }}$

Let t be the number of tyres and n the $n^{\text {th }}$ diagram

Diagram number (n)			
Number of tyres (t)			

General rule:
$t=\square \quad \square$

C

Let d be the number of dots and n the $n^{\text {th }}$ diagram

Diagram number (n)			
Number of dots (d)			

General rule:

$$
d=!\times!
$$

d

$1^{\text {st }}$

$2^{\text {nd }}$

$3^{\text {rd }}$

Let t be the number of triangles formed and n the $n^{\text {th }}$ diagram

Diagram number (n)			
Number of triangles (t)			

General rule:
$\square=\square \times \square$

There are actually two number patterns here, the other involves the number of matchsticks used. See if you can work it out!

Using the general rule

Substitution into the general rule is used to answer questions about the $n^{\text {th }}$ diagram in a pattern.
Find the general rule for the parallelogram pattern:

Let p be the number of parallelograms and n the $n^{\text {th }}$ diagram

n	1	2	3
p	2	4	6

$\therefore p=2 n$ general rule

How many parallelograms are there in the $20^{\text {th }}$ diagram of the pattern above?

$$
\begin{aligned}
\therefore p & =2 \times 20 \quad \text { Substitute } n=20 \text { into the general rule } \\
& =40 \text { parallelograms }
\end{aligned}
$$

Find the general rule for the matchstick number pattern:

Let m be the number of matchsticks and n the $n^{\text {th }}$ diagram

n	1	2	3
m	3	8	13

$$
\therefore m=5 n-2 \quad \text { general rule }
$$

How many matchsticks are there in the $8^{\text {th }}$ diagram?

$$
\begin{aligned}
\therefore m & =5 \times 8-2 \quad \text { Substitute } n=8 \text { into the general rule } \\
& =38 \text { matchsticks }
\end{aligned}
$$

Find the general rule for the amazing stick gymnast pattern:

Let g be the number of gymnasts and n the $n^{\text {th }}$ diagram

n	1	2	3
g	2	5	8

$\therefore g=3 n-1$ general rule

How many gymnasts are there in the $30^{\text {th }}$ pattern?

$$
\begin{aligned}
\therefore g & =3 \times 30-1 \text { Substitute } n=30 \text { into the general rule } \\
& =89 \text { gymnasts }
\end{aligned}
$$

What else can you do?

Using the general rule

1 a
Every time Niamh kicked a goal (g) the team score (s) increased by 2. The general rule for this is given by:

$$
s=2 g
$$

How many points did Niamh score after kicking $g=8$ goals?

(b) If the total number of chickens (c) that crossed the road after each minute (m) is given by the general rule:

$$
c=5 m-3
$$

How many chickens had crossed the road when $m=7$ minutes?

C The total number of shirts (s) tried on by customers (c) in a store is represented by the general rule:

$$
s=2 c+1
$$

How many shirts had been tried on when there were $c=12$ customers?
d The total number of vegetarian meals (v) ordered (on average) in a restaurant by diners (d) is given by the general rule:

$$
v=\frac{d}{3}
$$

How many vegetarian meals were ordered on a night with $d=36$ diners?

Using the general rule

2 The stacked tyres below form a number pattern. Find the general rule and then calculate how many tyres are in the $12^{\text {th }}$ stack.

$1{ }^{\text {st }}$ stack

$2^{\text {nd }}$ stack

$3^{\text {rd }}$ stack

Let t be the number of tyres and n the $n^{\text {th }}$ stack of tyres.

n			
t			

General rule:
Tyres in the $12^{\text {th }}$ stack:
(3) New leaves are appearing on a tree each day forming a number pattern.

Find the general rule and calculate how many leaves there are on the $10^{\text {th }}$ day.

Day 1

Day 2

Day 3

Let l be the number of leaves and n the $n^{\text {th }}$ day.

n			
l			

General rule:
Leaves on the $10^{\text {th }}$ day:

4 The basketballs represent the number of good shots during each training session. The good shots are increasing by the same amount each time. How many good shots are made during the $8^{\text {th }}$ session?
Session 1

Session 2

Session 3

Let s be the number of good shots and n the $n^{\text {th }}$ training session.

n			
s			

General rule: Good shots in the $8^{\text {th }}$ session:

What else can you do?

Using the general rule

(5) A tiler is laying out some octagonal tiles in the following number pattern:

$1^{\text {st }}$ diagram

$2^{\text {nd }}$ diagram

$3^{\text {rd }}$ diagram

How many tiles will be laid in the $12^{\text {th }}$ diagram?
let t be the number of tiles laid and n the $n^{\text {th }}$ diagram.

n			
t			

General rule:
Tiles laid in the $12^{\text {th }}$ diagram:

6 Triangles have been stacked to form an increasing number pattern:

7 triangles

12 triangles

17 triangles

Find the general rule and calculate the number of triangles needed for the $15^{\text {th }}$ shape.
Let t be the number of trangles and n the $n^{\text {th }}$ shape.

n			
t			

General rule:
Triangles in the $15^{\text {th }}$ shape:

Cheat Sheet

Words and symbols

Algebra uses letters or symbols called variables. Each part in an algebraic expression is called a term.

$$
x+6=10 \quad \text { equal sign ' }=\text { ' means } x+6 \text { has the same value as } 10
$$

The equal sign makes this an equation. The value of x must be 4 to be correct

Multiplication

Multiplications can be:

$$
\text { Simplified } \longrightarrow 6 \times n=6 n \quad x \times y=x y \quad \text { Expanded } \longrightarrow 6 n=6 \times n \quad x y=x \times y
$$

Division

It sometimes helps to write divisions as a fraction first when simplifying: $a \div b=\frac{a}{b}$
Brackets can be hidden when writing a division as a fraction: $y \div(4+x)=\frac{y}{4+x}$
When doing the reverse, brackets must be put in: $\frac{3-m}{6}=(3-m) \div 6$

Phrases as algebraic expressions
To solve problems with algebra we use variables to turn the problem into an algebraic rule (or relationship).

Addition and subtraction

Only Like terms can be added or subtracted.

Like terms:

Not Like terms:

Table of values

These show how one variable changes when another variable in a given rule is changed

Rule: $y=2 x+2$

Modelling number patterns

This is a fancy way Mathematicians say "find the algebra rule for the pattern"
The rule can be found using two methods:

1. Comparing the diagram number with the number of shapes in it.
2. Comparing the number of shapes with the number of objects used to make each diagram.

Tables of values help with both methods

After looking at the first values of $n=1$ and $s=4$, the rule must be: $s=2 n+2$

Using the general rule

The number of shapes/objects in a particular part of the pattern is found by substituting into the general rule.

How many Squares (s) are there in the $20^{\text {th }}$ pattern if $s=2 n+2$?

$$
\text { when } n=20, s=2 \times 20+2=42 \text { squares. }
$$

Words and symbols

1. (a) The variable is b
(b) The variable is m

C The variable is k
d The variable is a
2.

3. $14-k$ if $x=4$

4. (a) $c=8$
(b) $h=12$
c $k=18$
d $y=6$

Multiplication

1.

a $14 k$
(b) u
C $5 p r$
d $12 j k l$
(e) $18 b^{2}$
f 12 jkl
2. (a) $4 \times p \times q$
(b) $4 \times a \times a$

C $3 \times m \times m \times n$
3. © 14
(b) 3
C 30
d 36

Division

1. (a) $\frac{2}{d}$
(b) $\frac{a}{c}$
C $\frac{5}{r+3}$
(d) $\frac{y+z}{z}$
2. a $w \div 4$
(b) $c \div(3+a)$
c $6 \div(3 x+2)$
d $(x-y) \div(v+w)$
3. (a) $a \div 3$
(b) $b \div 2 c$

C $3 x \div 4 y$
(d) $(m+n) \div 3 p$

Mixed simplifying concepts

1. a $\frac{5 a}{4}$
(b) $\frac{m}{4+n}$
C $\frac{m n}{a b c}$
d $\frac{16 p}{9 q}$
e $\frac{x^{2}}{y+2 x}$
(f) $\frac{d^{2} f}{11+e f}$

Mixed simplifying concepts

2. (a) $2 \times d \div 3$
(b) $(a+4) \div b$
C $(q-r) \div(9 \times q)$
d $l \times l \div(j-k)$
(e) $5 \times b \times b \div(a \times a+2 \times b)$
(f) $7 \times x \times y \times z \div(x+7 \times y)$

Phrases as algebraic expressions

1. (a) $n+7$
(b) $9-n$
C $6 \times n+1=6 n+1$
(d) $4 \times n=4 n$
(e) $\frac{n+2}{3}$
(f) $n^{2}-6$
(8) $2(n-5)$
(b) $2 n-8$
(i) $10+\frac{n}{2}$
(i) $n(n+5)$
2. a Correct
(b) Incorrect
C Correct
d Incorrect
(e) Incorrect
f Correct
(B) Incorrect
(h) Correct
(i) Incorrect
(i) Correct

Addition and subtraction

1. a $10 a$
(b) $8 u$
C $5 r$
(d) $-3 g$
C $-2 m$
(f) $-9 x$
(8) $13 y$
(b) $5 p$
2.

(a) $25 m+9 n$
(b) $14 a+11 b$
C $16 x+24 y$
(d) $6 d-5 c$
(e) $18 e+2 a$
f $-2 g-4 h$

Grouping like terms

1. (a) $10 a+7 b$
(b) $11 p^{2}+22 p$
C $-23 m$
d $4 y-13 x$
(e) $12 p+8 q$
(f) $16 a^{2}+4 b-3 a$
2. a $\frac{11 y}{y+2 x}$
(b) $\frac{-p^{2}-5 p}{12}$
3. a $\frac{4 x-3 y}{7 x-2 y} \quad$ (b) $\frac{8 a+6 b}{5 a^{2}}$

Escape from Algebra Island Puzzle

Bringing all the previous concepts together
1.
a 18
b 3
C 9
d 2
2. (a) 8
(b) 27

C 8
d 5
3.
a 54
(b) 30

C 4
d -9
4.
a 7
(b) -6

C 60
d -6
5. 2
6. 1

Tables of Values

1.

v	0	1	2	3	4
u	2	3	4	5	6

b

d	0	1	2	3	4
c	0	2	4	6	8

c

h	1	2	3	4	5
g	1	5	9	13	17

d

x	2	4	6	8	10
y	2	3	4	5	6

2.

a	1	2	3	4	5	$h-a+4$
b	1	6	11	16	21	- $b=$
a	0	1	2	3	4	,
b	0	3	6	9	12	
a	0	1	2	3	4	
b	3	5	7	9	11	

3.

x	0	1	2	3	4
y	5	6	7	8	9

(b)

m	0	1	2	3	4
n	0	4	8	12	16

c

p	0	1	2	3	4
q	-3	-2	-1	0	1

d

c	0	1	2	5	6
d	-5	-1	3	15	19

Number patterns

1. a (i) Starting with one smiley face in the first diagram, 2 smiley faces are added to each diagram every time.
(ii) $1,3,5,7,9, \ldots$
(b) (i) Starting with three arrows in the first diagram, 4 arrows are added to each diagram every time
(ii) $3,7,11,15,19, \ldots$

C (i) Starting with 6 triangles to form the first diagram, 6 triangles are added to each diagram every time.
(ii) $6,12,18,24,30, \ldots$
2.
(i)

Diagram number	1	2	3	4
Number of hearts	2	5	8	11

(ii) 20
(b) (i)

Diagram number	1	2	3	4
Number of hexagons	3	8	13	18

(ii) 33

C (i)

Diagram number	1	2	3	4
Number of matchsticks	3	7	11	15

(ii) 27

Modelling Number Patterns

1.

a $m=3 \times s+1$
(b) $m=2$ t+ 1
(c) $c=1 r+1$
(d) $t=7$ p

More number pattern modelling

1. (a) $m=3 \times n+1$
(b) $m=4 n+1$
(c) $m=4 n+5$
(d) $m=9 \quad n-5$
2. (a) $s=2 \times n$
(b) $t=5 n-1$
(c) $d=4 \times n+1$
(d) $t=2$

Using the general rule

1.

a 16 points
(b) 32 chickens
C 25 shirts
d 12 vegetarion meals
2. 58
3. 39
4. 52
5. 70
6. 77

