Percentage Calculations

Solutions

Curriculum Ready

ACMNA: 157, 158, 187, 189

Page 3 questions

Fractions and percentages

(1) a $\frac{3}{100}=3 \%$
(b) $\frac{41}{100}=\frac{41}{\%}$
c $\frac{110}{100}=110 \%$
(d) $\frac{200}{100}=200 \%$
2. (a) $7 \%=\frac{7}{100}$
(b) $89 \%=\frac{89}{100}$
C $117 \%=\frac{117}{100}$
(d) $336 \%=\frac{336}{100}$
3 (a) $20 \%=\frac{20}{100}=\frac{1}{5}$
(b) $15 \%=\frac{15}{100}=\frac{3}{20}$

(d) $24 \%=\frac{24}{100}=\frac{6}{\frac{6}{25}}$

(1) $96 \%=\frac{96}{100}=\frac{24}{25}$
(8) $125 \%=\frac{125}{100}=\frac{5}{4}$
(h) $180 \%=\frac{180}{100}=\frac{9}{\substack{5 \\ \text { Simplified } \\ \text { improper }}}$
(i) $350 \%=\frac{350}{100}=\frac{7}{2}$
(4) a $\frac{24}{300}=\frac{24 \div 3}{300 \div 3}$
(b) $\frac{48}{200}=\frac{48 \div 2}{200 \div \frac{2}{2}}$
c $\frac{175}{500}=\frac{175 \div 5}{500 \div 5}$

$$
\begin{aligned}
& =\frac{24}{100} \\
& =\frac{24}{2} \%
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{35}{100} \\
& =35 \%
\end{aligned}
$$

Page 4 questions

Fractions and percentages
(5) (a) $\frac{3}{10}=\frac{3 \times 10}{10 \times 10}$
(b) $\frac{12}{25}=\frac{12 \times 4}{25 \times 4}$
C $\frac{6}{5}=\frac{6 \times 20}{5 \times 20}$

$$
\begin{aligned}
& =\frac{120}{100} \\
& =120 \% \\
& \%
\end{aligned}
$$

(b) $2 \frac{1}{4}=\frac{9 \times 2 \times 1}{4 \times 25}$
(c) $1 \frac{2}{5}=\frac{7 \times 2 \times 2}{5 \times 20}$

$=\frac{225}{100}$
$=225 \%$

$$
=140 \%
$$

7
(a) $\frac{1}{2}=50 \%$
(d) $\frac{13}{50}=$
$26 \quad \%$
(b) $\frac{1}{5}=20 \%$

C $\frac{8}{25}=32$ \%
(e) $\frac{5}{2}=250 \%$
(f) $\frac{15}{20}=75 \%$

8 (a) $2 \frac{2}{5}=\frac{12}{5}=\frac{1}{5}=\frac{1}{a}$
(b) $3 \frac{3}{4}=\frac{15}{4}=375 \%$
c $1 \frac{7}{20}=\frac{27}{20}=135 \%$
(d) $4 \frac{9}{25}=\frac{109}{25}=436$

Percentage Calculations Solutions

Page 5 questions

Fractions and percentages

(9) a $\frac{13}{500}=\frac{2.6}{100}=\frac{3.6}{2} \%=\begin{gathered}\frac{3}{5},\end{gathered}$
(b) $\frac{30}{800}=\frac{3.75}{100}=\frac{3.75}{3} \%=\begin{gathered}3 \\ \frac{3}{4} \\ \text { Decimal }\end{gathered}$
C $\frac{17}{400}=\frac{4.25}{100}=\frac{4.25}{4} \%=\frac{1}{4} \%$
(d) $\frac{26}{500}=\frac{5.2}{100}=$
5.2
$\%=$
5
Decimal Mixed numeral
(e) $\frac{47}{500}=\frac{9.4}{100}=\frac{9.4}{5} \%=\frac{2}{5}, \%$
Decimal
Mixed numeral
(f) $\frac{42}{400}=\frac{10.5}{100}=10.5 \%=10 \frac{1}{2} \%$
Decimal
Mixed numeral
10

(b) $\frac{7}{500}=\frac{1.4}{100}=1.4 \quad \%=\frac{7}{5} \%$
Decimal Improper fraction

 Decimal Improper fraction

Page 7 questions

Decimals and percentages

1
0.15
(b) $20 \%=0.20$
C $4 \%=0.04$
(d) $9 \%=0.09$
(e $125 \%=1.25$
(f) $250 \%=2.50$
(8 $110 \%=1.10$
(b) $305 \%=$
2
(a) $0.03=3 \%$
(b) $0.16=16 \%$
C $1.12=112 \%$
(d) $2.45=245 \%$
(e $0.125=12.5 \%$
(f) $0.253=25.3 \%$
©
$0.018=1.8 \%$
(b) $0.2225=22.25 \%$
(3)
a $0.015=\frac{1.5}{\text { Decimal }} \%$
(b) $0.185=\frac{18.5}{\text { Decimal }} \%$
c
$0.012=\frac{1.2}{\substack{\text { Decimal }}}$
(d)
$0.458=\begin{gathered}45.8 \\ \text { Decimal }\end{gathered}$

Improper fraction

Mixed numeral

(e $375.20 \%=\frac{3.752}{}=\frac{94}{125}=\frac{469}{(125}$

Percentage Calculations Solutions

Page 8 questions

Decimals and percentages

(5) Simplified fraction $=\frac{1}{4}$

Decimal $=0.25$

C Improper fraction form $=\frac{19}{4} \%$
Decimal form $=4.75 \%$
Simplified fraction $=\frac{19}{400}$
Decimal $=0.0475$
(e) Mixed numeral form $=112 \frac{1}{2} \%$

Improper fraction form $=\frac{225}{2} \%$
Simplified mixed numeral $=1 \frac{1}{8}$
Decimal $=1.125$
(8) Mixed numeral form $=17 \frac{1}{4} \%$ Improper fraction form $=\frac{69}{4} \%$
Simplified fraction $=\frac{69}{400}$
Decimal $=0.1725$
(i) Mixed numeral form $=2 \frac{3}{8} \%$ Improper fraction form $=\frac{19}{8} \%$
Simplified fraction $=\frac{19}{800}$
Decimal $=0.02375$
(b) Mixed numeral form $=5 \frac{1}{2} \%$ Improper fraction form $=\frac{11}{2} \%$
Simplified fraction $=\frac{11}{200}$
Decimal $=0.055$
(d) Improper fraction form $=\frac{17}{8} \%$

Decimal form $=2.125 \%$
Simplified fraction $=\frac{17}{800}$
Decimal $=0.02125$
(f) Mixed numeral form $=237 \frac{1}{5} \%$

Improper fraction form $=\frac{1186}{5} \%$
Simplified mixed numeral $=2 \frac{93}{250}$
Decimal $=2.372$
(b) Decimal form $=7.1875 \%$

Improper fraction form $=\frac{115}{16} \%$
Simplified fraction $=\frac{23}{320}$
Decimal $=0.071875$
(i) Decimal form $=100.625 \%$ Improper fraction form $=\frac{805}{8} \%$
Simplified mixed numeral $=1 \frac{1}{160}$
Decimal $=1.00625$

Page 10 questions

Recurring decimals and percentages

(1) a $0.1 \%=\frac{1}{9} \%$
(b) $0.5 \%=\frac{5}{9} \%$
C $0.07 \%=\frac{7}{90} \%$

(d) $0.057 \%=\frac{5}{10 .}$

3

(b) $14 \frac{4}{9} \%=\begin{gathered}14 . \dot{4} \quad \% \\ \text { Decimal form }\end{gathered}$

Fraction

Fraction

Fraction

Page 11 questions

Recurring decimals and percentages
(4)

Page 12 questions

Recurring decimals and percentages

5
a $\frac{8}{1}$

(b) $\frac{19}{12}=19 \div 12$

 Equivalent percentage to 1 d.p.
C $\frac{5}{6}=0.8 \dot{3}$
Recurring decimal

d $\frac{2}{15}=\begin{gathered}0.1 \dot{3} \\ \\ \text { Recurring decimal }\end{gathered}$

e $\frac{5}{18}=\begin{gathered}0.27 \\ \text { Recurring decimal }\end{gathered}$

f $\frac{9}{22}=\begin{gathered}0.4 \dot{0} \dot{9} \\ \text { Recurring decimal }\end{gathered}$

(8 $\frac{7}{12}=\begin{gathered}0.583 \\ \\ \text { Recurring decimal }\end{gathered}$

(i) $\frac{12}{11}=$
1.09
(i) $\frac{17}{15}=$
1.13

Page 14 questions

Complementary percentages

1
10%
Complement $=\quad 90 \quad \%$
b 25%
25%
Complement $=75 \%$
C 55%
Complement $=45 \%$
d 37%
Complement $=\begin{gathered}63 \%\end{gathered}$
e 2%
Complement $=98$ \%
(f) 99%
Complement $=1 \%$
2
(a) 0.4
Complement $=0.6$
d
0.65
Complement $=0 . \quad 0.6$
0.6
(b) 0.8 Complement $=0.2$
C 0.75
Complement $=0.25$
e 0.32

(f) $\begin{aligned} & 0.07 \\ & \text { Complement }=0.1 \\ & 0.93\end{aligned}$

(b) $0 . \dot{8}$

(i) $0.1 \dot{4}$
Complement $=0.85$
(3) (a) $\frac{1}{3}$

d $\frac{1}{2}$
1
Complement $=\frac{1}{2}$
b $\frac{3}{4}$

C $\frac{4}{5}$

(e) $\frac{7}{10}$
3
Complement $=$

(f) $\frac{13}{25}$ 12
Complement $=$ 25
(4)
a 65.5%
Complement $=\begin{gathered}34.5 \\ \%\end{gathered}$
(b) 0.5%
Complement $=99.5$ \%
C 12.75%
Complement $=$
87.25%
d 30.15%
Complement $=68.85 \%$
(e) 73.12%
Complement $=26.88 \%$

(8) $22 \frac{1}{5} \%$
(h) $90 \frac{5}{6} \%$
(i) $\frac{3}{20} \%$
Complement $=9 \frac{1}{6} \quad \%$
Complement $=99 \frac{17}{20} \%$

9

Page 16 questions

Percentages of an amount

(b) 28% of $75=\frac{28}{100} 7 \times 2$
$=21$
C 65% of $60=\left\{\begin{array}{c:c}65 & 100 \\ \hdashline \cdots a \cdots \cdots\end{array}\right] \times 60$
$=0.65 \times 60$

$$
=39
$$

(d) 22.5% of $280=\{22.5 \div 100\} \times 280$

$=63$
2
(a) $\frac{20}{100} \times 65=0.2 \times 65$

$$
=13
$$

(b) $\frac{60}{100} \times 35=0.6 \times 35$
$=21$

C $\frac{22}{100} \times 25=0.22 \times 25$

$$
=5.5
$$

d $\frac{15}{100} \times 30=0.15 \times 30$

$$
=4.5
$$

(e) $\frac{67.5}{100} \times 48=0.675 \times 48$ $=32.4$
(f) $\frac{34.5}{100} \times 14=0.345 \times 14$ $=4.83$
(8) $\frac{125}{100} \times 12=1.25 \times 12$ $=15$
(b) $\frac{220}{100} \times 40=2.20 \times 40$ $=88$
(i) $\frac{150}{100} \times 15=1.5 \times 315$

$$
=22.5
$$

(i) $\frac{175}{100} \times 79=1.75 \times 79$ $=138.25$

Where does it work?

Page 17 questions

Percentages of an amount
3
a

b
25
c

d

e

f.

(8)

(h)

(
(d) 75%

(e) 30%

C 25%

(4)

b 20%

(f) 65%

5

(b) 0.25

c $0 . \dot{3}$

(d) $0.58 \dot{3}$

(6) 90%

(b) 25%

C 35%

Where does it work?

Page 18 questions

Percentages of an amount

(6) a 40% chose vegetarian course. $\therefore \frac{40}{100} \times 95=38$
$\therefore 38$ of the diners chose the vegetarian course.
b 30% of the time was in meetings. $\therefore \frac{30}{100} \times 8=2.4$ hours
\therefore Mitch spent 2 hours and 24 minutes in meetings.
C 15.5% of the tickets still available. $\therefore \frac{15.5}{100} \times 12800=1984$ tickets
\therefore There are 1984 tickets available after 1 hour.
d 42% of the time was right paddle. $\therefore \frac{42}{100} \times 3650=1533$
\therefore The right paddle entered the water 1533 times.
(7) 40% of $75 \Longleftrightarrow \frac{40}{100} \times 75=30$
75% of $40 \Longleftrightarrow \frac{75}{100} \times 40=30$
This is true for all percentage calculations because both are the same calculation and are examples of the commutative law $(a \times b=b \times a)$.
40% of $75=\frac{40}{100} \times 75=\frac{40}{100} \times \frac{75}{1}=\frac{40 \times 75}{100}=\frac{75 \times 40}{100}=\frac{75}{100} \times \frac{40}{1}=\frac{75}{100} \times 40=75 \%$ of 40

Page 19 questions

Percentages of an amount

(8) 25% of the 64 GB left. $\therefore \frac{25}{100} \times 64=16$
\therefore There are 16 GB left on the music device.
-9 87.5% of the listed items in the shopping trolley. $\therefore \frac{87.5}{100} \times 96=84$
\therefore There 84 of the listed items are in the shopping trolley.
(10) 0.57 of the pieces are left to complete the puzzle. $\therefore 0.57 \times 900=513$
$\therefore 513$ pieces still need to be placed to complete the jigsaw puzzle.
(11) (i) The sled has $1-0.1 \dot{5}=0.8 \dot{4}$ of the way down left to go.
(ii) $0.8 \dot{4}$ of the way down the hill left. $\therefore 0.8 \dot{4} \times 450=380$

Where does it work?

Page 20 questions

Percentages of an amount

(12) (i) $1-\frac{1}{3}=\frac{2}{3}=66.6 \%$
$\therefore 66.6 \%$ of the lightning strikes did not occur on the golf course.
(ii) $\frac{2}{3} \times 78=52$
$\therefore 52$ of the lightning strikes did not occur on the golf course.
(13) $100 \%-83 \frac{1}{3} \%=16 \frac{2}{3} \%$
\therefore Number of surveys not returned $=\frac{16 . \dot{6}}{100} \times 252=42$
$\therefore 42$ of the surveys posted out were not returned.
(14) Total number of dots $=6+5+4+3+2+1=21$
$100 \%-14 \frac{2}{7} \%=85 \frac{5}{7} \%$
\therefore Number of other non-centred dots $=\frac{85 \frac{5}{7}}{100} \times 21=18$
$\therefore 18$ of the dots on a normal dice are not located at the centre of a side.
(15) (i) $0.795 \dot{3} \times 18=14.316$
\therefore The water level is 14.3 m from the top of the well accurate to 1 decimal place.
(ii) Water level $=18-14.316=3.684 \mathrm{~m}$
\therefore The water level is $\frac{3.684}{18} \times 100=20 \frac{7}{15} \%$ of the well is full.
$\therefore<25 \%$, so the water level indicates drought conditions.

Page 22 questions

One amount as a percentage of another
1
a $\frac{35}{50} \times 100 \%=70 \%$
b $(3.2 \div 5) \times 100 \%=64 \%$

2
(a) $(17 \div 22.5) \times 100 \%=75.5 \%$

$$
=75 \frac{5}{9} \%
$$

(b) $\left(\frac{1}{3} \div \frac{4}{5}\right) \times 100 \%=41.6 \%$ $=41 \frac{2}{3} \%$
(3) ($(10.5 \div 83.4) \times 100 \%=12.58992806 \ldots \%$

$$
\approx 12.59 \% \text { (to } 2 \text { d.p.) }
$$

(b) $(12.25 \div 50) \times 100 \%=24.5 \dot{1} \%$

$$
\approx 24.51 \% \text { (to } 2 \text { d.p.) }
$$

4
a $(15.3 \div 22.5) \times 100 \%=68 \%$
(b) $(13.05 \div 22.5) \times 100 \%=58 \%$

C $(18.225 \div 22.5) \times 100 \%=81 \%$
Pencil type
HB
Pencil type
3 H
d $(16.825 \div 22.5) \times 100 \%=75 \%$

(5) $40-25=15$ vegetables do not get a nutritional report.
$\therefore(15 \div 40) \times 100 \%=37.5 \%$
$\therefore 37.5 \%$ of the vegetables do not get a nutritional report written about them.

Where does it work?

Page 23 questions

One amount as a percentage of another
(6) $582-368=214$ birds wait for the first flock to leave.
$\therefore(214 \div 582) \times 100 \%=36.76975945 \ldots \%$
$\therefore \approx 37 \%$ of the migrating birds leave as part of the second flock.
(7) a $(361130976 \div 510072000) \times 100 \%=70.8 \%$
$\therefore 70.8 \%$ of the Earth's surface is covered in salt water.
(b) 70.8% of 196935000 square miles $=(70.8 \div 100) \times 196935000$

$$
=139429980 \text { square miles }
$$

$\therefore 139429980$ square miles of the Earth's surface is covered in salt water.

8 First five minutes $=(980.24 \times 60 \times 5)=294072$ hits.
$\therefore(294072 \div 1225300) \times 100 \%=24 \%$
$\therefore 24 \%$ of the hits occurred in the first five minutes.
(9) Gallons left $=(125.75-70.8)=54.95$ gallons remaining.

$$
\begin{aligned}
\therefore(54.95 \div 125.75) \times 100 \% & =43.67981312 \ldots \% \\
& \approx 43.70 \% \text { (to } 2 \text { d.p.) }
\end{aligned}
$$

\therefore approximately 43.7% of the water remains in the tank.

What else can you do?

Page 25 questions

Percentage change

(1) a $\begin{aligned} 10 \% \text { increase } & =100 \%+10 \% \\ & =110 \% \text { of initial amount }\end{aligned}$

Other method:
Find 10% of 25 and add to 25

(b) 40% decrease $=100 \%-40 \%$ $=60 \%$ of initial amount

Other method:
Find 40% of 65 and subtract from 65

\therefore Decrease of $40 \%=65-26=39$
(2) a A decrease of $30 \%=100 \%-30 \%$

$$
=70 \% \text { of original amount }
$$

$$
\begin{aligned}
\therefore 70 \% \text { of } 50 & =0.70 \times 50 \\
& =35
\end{aligned}
$$

(b) An increase of $25 \%=100 \%+25 \%$

$$
=125 \% \text { of original amount }
$$

$$
\begin{aligned}
\therefore 125 \% \text { of } 76 & =1.25 \times 76 \\
& =95
\end{aligned}
$$

C An increase of $5 \%=100 \%+5 \%$

$$
=105 \% \text { of original amount }
$$

$$
\begin{aligned}
\therefore 105 \% \text { of } 6.2 & =1.05 \times 6.2 \\
& =6.51
\end{aligned}
$$

Page 25 questions

Percentage change

(2) A reduction of $1.5 \%=100 \%-1.5 \%$

$$
=98.5 \% \text { of original amount }
$$

$$
\begin{aligned}
\therefore 98.5 \% \text { of } 8 & =0.985 \times 8 \\
& =7.88
\end{aligned}
$$

e An increase of $33.3 \%=100 \%+33.3 \%$

$$
=133.3 \% \text { of original amount }
$$

$$
\begin{aligned}
\therefore 133 . \dot{3} \% \text { of } 258 & =1 . \dot{3} \times 258 \\
& =344
\end{aligned}
$$

(f) An increase of $92 \%=100 \%+92 \%$

$$
=192 \% \text { of original amount }
$$

$$
\begin{aligned}
\therefore 192 \% \text { of } 12.8 & =1.92 \times 12.8 \\
& =24.576
\end{aligned}
$$

(3) A decrease of $100 \%=100 \%-100 \%$

$$
=0 \% \text { of original amount }
$$

$$
\begin{aligned}
\therefore 0 \% \text { of } 50 & =0.00 \times 50 \\
& =0 \text { cars }
\end{aligned}
$$

b No, because a decrease of more than 100% gives you a negative number of cars. Negative amounts of a physical quantity means you finish with less than zero cars, which is not possible.

What else can you do?

Page 26 questions

Percentage change

(4) an increase of $100 \%=100 \%+100 \%$

$$
=200 \% \text { of original amount }
$$

$$
\begin{aligned}
\therefore 200 \% \text { of } 70 & =2.00 \times 70 \\
& =140
\end{aligned}
$$

b. An increase of 100% is the same as doubling. So an equivalent mathematical calculation is 2×70.

C An increase of $200 \%=100 \%+200 \%$

$$
=300 \% \text { of original amount }
$$

$$
\therefore 300 \% \text { of } 70=3.00 \times 70
$$

$$
=210
$$

d An increase of 200% is the same as tripling. So an equivalent mathematical calculation is 3×70.
e Let n be any positive counting number. An increase of $n \times 100 \%=(n+1) \times$ the original amount.
(5) an increase of $50 \%=100 \%+50 \%$

$$
=150 \% \text { of original amount }
$$

$$
\begin{aligned}
\therefore 150 \% \text { of } \$ 20 & =1.50 \times \$ 20 \\
& =\$ 30
\end{aligned}
$$

b A decrease of $50 \%=100 \%-50 \%$

$$
=50 \% \text { of amount in part a }
$$

$$
\begin{aligned}
\therefore 50 \% \text { of } \$ 30 & =0.50 \times \$ 30 \\
& =\$ 15
\end{aligned}
$$

C The increased amount is $\$ 30$ and the original amount is $\$ 20,50 \%$ of both values is different, so when decreasing the larger amount by a similar percentage, the actual amount it is reduced by is also larger.

What else can you do?

Page 26 questions

Percentage change

(6) (a) An increase of $20 \%=100 \%+20 \%$

$$
=120 \% \text { of original amount }
$$

$$
\begin{aligned}
\therefore 120 \% \text { of } 80 \mathrm{~m} & =1.20 \times 80 \mathrm{~m} \\
& =96 \mathrm{~m}
\end{aligned}
$$

$$
\text { A further increase of } \begin{aligned}
25 \% & =100 \%+25 \% \\
& =125 \% \text { of new amount } \\
\therefore 125 \% \text { of } 96 \mathrm{~m} & =1.25 \times 96 \mathrm{~m} \\
& =120 \mathrm{~m}
\end{aligned}
$$

b No, because the whole 45% is calculated on the smaller initial value (increasing 80 m by $45 \%=116 \mathrm{~m}$). When split into two increases, the remaining 25% is calculated using a larger value, so therefore a larger increase.

Page 27 questions

Percentage change

(7) An increase of $33.3 \%=100 \%+33.3 \%$

$$
=133.3 \% \text { of original amount }
$$

$$
\begin{aligned}
\therefore 133 . \dot{3} \% \text { of } 60 & =1 . \dot{3} \times 60 \\
& =80
\end{aligned}
$$

A further decrease of $20 \%=100 \%-20 \%$

$$
=80 \% \text { of new amount }
$$

$$
\begin{aligned}
\therefore 80 \% \text { of } 80 & =0.80 \times 80 \\
& =64
\end{aligned}
$$

Page 27 questions

Percentage change

(7) A reduction of $25 \%=100 \%-25 \%$

$$
=75 \% \text { of original amount }
$$

$\therefore 75 \%$ of $200=0.75 \times 200$

$$
=150
$$

A further reduction of $70.5 \%=100 \%-70.5 \%$

$$
=29.5 \% \text { of new amount }
$$

$$
\begin{aligned}
\therefore 29.5 \% \text { of } 150 & =0.295 \times 150 \\
& =44.25
\end{aligned}
$$

C A decrease of $12 \%=100 \%-12 \%$

$$
=88 \% \text { of original amount }
$$

$$
\therefore 88 \% \text { of } \$ 55=0.88 \times \$ 55
$$

$$
=\$ 48.40
$$

A further increase of $16 \%=100 \%+16 \%$

$$
=116 \% \text { of new amount }
$$

$$
\begin{aligned}
\therefore 116 \% \text { of } \$ 48.40 & =1.16 \times \$ 48.40 \\
& =\$ 56.14
\end{aligned}
$$

(d) An inflation of $5.25 \%=100 \%+5.25 \%$

$$
=105.25 \% \text { of original amount }
$$

$$
\begin{aligned}
\therefore 105.25 \% \text { of } \$ 90 & =1.0525 \times \$ 90 \\
& =\$ 94.725
\end{aligned}
$$

A further reduction of $0.6 \%=100 \%-0.6 \%$

$$
=99.4 \% \text { of new amount }
$$

$$
\begin{aligned}
\therefore 99.4 \% \text { of } \$ 94.725 & =0.994 \times \$ 94.725 \\
& =\$ 94.16
\end{aligned}
$$

Page 27 questions

Percentage change

8

$$
\text { An increase of } \begin{aligned}
45 \% & =100 \%+45 \% \\
& =145 \% \text { of original amount }
\end{aligned}
$$

$\therefore 145 \%$ of $20=1.45 \times 20$
$=29$ triangles
\therefore need to add 9 same-sized triangles to the diagram.

$$
\begin{aligned}
\text { A reduction of } 66 . \dot{6} \% & =100 \%-66 . \dot{6} \% \\
& =33 . \dot{3} \% \text { of original amount }
\end{aligned}
$$

$$
\therefore 33.3 \% \text { of } 27=0 . \dot{3} \times 27
$$

$$
=9 \text { bananas }
$$

\therefore need cross off 18 bananas to leave only 9 .

$$
\begin{aligned}
60 \% \text { of } 20 \text { squares } & =0.6 \times 20 \\
& =12 \text { shaded } \\
\text { A decrease of } 75 \% & =100 \%-75 \% \\
& =25 \% \text { of } 12 \text { squares }
\end{aligned}
$$

$$
\begin{aligned}
\therefore 25 \% \text { of } 12 & =0.25 \times 12 \\
& =3 \text { squares }
\end{aligned}
$$

\therefore only 3 squares remain shaded.

What else can you do?

Page 28 questions

Percentage change

9
Ingredients

Percentage change needed

Quantity needed for 4 people
$26 \frac{1}{4} \mathrm{~g}$ of oregano [serves 14]

capsicum [serves 5]

(i) (ii) (iii) (iv) (v)

(vi)

(x)

Page 30 questions

Unitary method
1

b 112% of the amount $=84$

$\therefore 100 \%$ of the amount $=0.75 \times$ $=75$ 100

2
a $55 \%=220$

$$
\begin{aligned}
\therefore 1 \% & =220 \div 55 \\
& =4
\end{aligned}
$$

(b) $325 \%=487.5$

$$
\begin{aligned}
\therefore 1 \% & =487.5 \div 325 \\
& =1.5
\end{aligned}
$$

$$
\begin{aligned}
\therefore 100 \% & =4 \times 100 \\
& =400
\end{aligned}
$$

$$
\begin{aligned}
\therefore 100 \% & =1.5 \times 100 \\
& =150
\end{aligned}
$$

C $34.2 \%=282.15$
(d) $115 \frac{3}{8} \%=1269 \frac{1}{8}$

$$
\therefore 1 \%=1269 \frac{1}{8} \div 115 \frac{3}{8}
$$

$$
=11
$$

$$
\begin{aligned}
\therefore 100 \% & =8.25 \times 100 \\
& =825
\end{aligned}
$$

$\therefore 100 \%=11 \times 100$

$$
=1100
$$

(e) $286 \%=16094$

$$
\begin{aligned}
& \therefore 1 \%= \\
& = \\
& =56 . \dot{2} \dot{7} \div 286 \\
& \begin{aligned}
\therefore 100 \% & =56 . \dot{2} \dot{7} \times 100 \\
& =5627 . \dot{2} \dot{7}
\end{aligned}
\end{aligned}
$$

(f) $14 \frac{2}{3} \%=7.1 \dot{6}$

$$
\therefore 1 \%=7.16 \div 14 \frac{2}{3}
$$

$$
=0.488636363
$$

$$
=0.488 \dot{6} \dot{3} \ldots
$$

$$
\begin{aligned}
\therefore 100 \% & =0.488 \dot{6} \dot{3} \times 100 \\
& =48.8 \dot{6} \dot{3} \dot{1}
\end{aligned}
$$

Page 31 questions

Unitary method
(3) (a) $65 \%=390$

$$
\begin{aligned}
\therefore 1 \% & =390 \div 65 \\
& =6
\end{aligned}
$$

$$
\begin{aligned}
\therefore 32 \% & =6 \times 32 \\
& =192 \text { units }
\end{aligned}
$$

$$
\text { (c) } \begin{aligned}
110 \% & =5 \mathrm{~kg} \\
\therefore 1 \% & =5 \div 110 \\
& =0.0 \dot{4} \dot{5} \mathrm{~kg}
\end{aligned}
$$

$$
\begin{aligned}
\therefore 44 \% & =0.0 \dot{4} \dot{5} \times 44 \\
& =2 \mathrm{~kg}
\end{aligned}
$$

(4) a $35 \%=56 \mathrm{~kg}$

$$
\begin{aligned}
\therefore 1 \% & =56 \div 35 \\
& =1.6
\end{aligned}
$$

$$
\begin{aligned}
\therefore 100 \% & =1.6 \times 100 \\
& =160 \mathrm{~kg}
\end{aligned}
$$

C $\begin{aligned} \frac{2}{5} \times 41250 & =16500 \text { people } \\ 60 \% & =16500 \text { people }\end{aligned}$

$$
60 \%=16500 \text { people }
$$

$$
\therefore 1 \%=16500 \div 60
$$

$$
=275 \text { people }
$$

$$
\begin{aligned}
\therefore 100 \% & =275 \times 100 \\
& =27500 \text { people }
\end{aligned}
$$

$$
\text { (b) } \begin{aligned}
12 \% & =46 \mathrm{~g} \\
\therefore 1 \% & =46 \div 12 \\
& =3.8 \dot{\mathrm{j}} \mathrm{~g} \\
\therefore 30 \% & =3.8 \dot{3} \times 30 \\
& =115 \mathrm{~g}
\end{aligned}
$$

d $290 \%=4096$
$\therefore 1 \%=4096 \div 290$ $=14.12413793 \ldots$

$$
\begin{aligned}
\therefore 72.5 \% & =14.12413793 \times 72.5 \\
& =1024 \text { amoeba }
\end{aligned}
$$

(b) $87.5 \%=8575$ termites

$$
\begin{aligned}
\therefore 1 \% & =8575 \div 87.5 \\
& =98 \text { termites }
\end{aligned}
$$

$$
\therefore 11.5 \%=11.5 \times 98
$$

$=1127$ soldier termites

What else can you do?

Page 32 questions

Unitary method
(5) a $\begin{aligned} \frac{100}{35} \times 16 & =45.71428571 \ldots \\ & =45.71 \text { (to } 2 \text { d.p.) }\end{aligned}$
(b) $\frac{100}{450} \times 96=21 . \dot{3}$

$$
=21.33 \text { (to } 2 \text { d.p.) }
$$

C $\frac{45}{71} \times 121=76.69014085 \ldots$
d $\frac{50}{128} \times 245.8=96.015625 \ldots$

$$
=96.02 \text { (to } 2 \text { d.p.) }
$$

(e) $\frac{140}{30} \times \frac{5}{8}=2.916$

$$
=2.92 \text { (to } 2 \text { d.p.) }
$$

(f) $\frac{10 \frac{3}{7}}{5 \frac{1}{3}} \times 2130=4164.910714 \ldots$
$=4164.91$ seconds (to 2 d.p.)
(6) a $\frac{70}{2.5} \times 8=224$
(b) $\frac{70}{2.5} \times 7=196$
(c) $\frac{70}{2.5} \times 3.5=98$

Page 34 questions

Profit and loss

1
a Cost price $=\$ 25$
Sale price $=\$ 22$
$\therefore \quad \$ 3$ Profit
(b) Cost price $=\$ 45.00$
Sale price $=\$ 63.50$
$\therefore \$ 18.50$ X Profit

Cost price $=\$ 104.25$
$\therefore \$ 36.50$ - Profit

What else can you do?

Page 34 questions

Profit and loss

3

(4) Cost price $=\$ 20.50$ Sale price $=\$ 11.45$ $\$ 9.05$

$$
\begin{aligned}
& \text { Profit } \\
& \mathbf{X} \text { Loss }
\end{aligned}
$$

(b) Cost price $=\$ 59.40$ $\$ 25.55$ X Profit Sale price $=\$ 84.95$

$$
\begin{aligned}
& =\begin{array}{c:c}
44.1 & \% \text { Profit of the cost price } \\
\times & \text { Loss of the cost price }
\end{array} \\
& =79.0 \quad \% \quad \begin{array}{l}
\% \\
\% \text { Loss of the cost price }
\end{array}
\end{aligned}
$$

$=43.0 \quad \% \stackrel{\text { X }}{ } \begin{array}{ll}\text { Profit of the cost price }\end{array}$
$=30.1 \% \%$ Profit of the cost price

Page 35 questions

Profit and loss

(5) a $\$ 24$ marked up $25 \%=1.25 \times \$ 24$

$$
=\$ 30
$$

Marked price $=\$ 30.00$

C $\$ 230$ marked up $12.5 \%=1.125 \times \$ 230$

$$
=\$ 258.75
$$

Marked price $=\$ 258.75$
(b) $\$ 32.50$ marked up $46 \%=1.46 \times \$ 32.50$

$$
=\$ 47.45
$$

Marked price $=\$ 47.45$
(b) 40% discount on $\$ 78.50=0.60 \times \$ 78.50$

$$
=\$ 47.10
$$

Discounted price $=\$$

What else can you do?

Page 35 questions

Profit and loss

(7) $\$ 210$ marked up $50 \%=1.50 \times \$ 210$

$$
=\$ 315
$$

5 tables sold for $\$ 315=$ total sales of $\$ 1575$. 5 tables cost at $\$ 210$ each $=\$ 1050$.

Therefore, profit $=\$ 1575-\$ 1050$

$$
=\$ 525 \text { profit. }
$$

Or simply, since the markup was 50% on all of them and they were sold at this price, then the profit is 50% !

Total cost of the tables was $10 \times \$ 210=\$ 2100$
Sale price $>$ Cost price, so in profit
\therefore Profit $=\$ 2520-\$ 2100=\$ 420$

Page 36 questions

Profit and loss

8 a Percentage discount $=30 \%$
Discount of $30 \%=70 \%$ of original value

$$
\begin{aligned}
& \therefore 70 \%=\$ 3150 \\
& \therefore 1 \%=\$ 3150 \div 70 \\
& =\$ 45 \\
& \therefore 100 \%=\$ 45 \times 100 \\
& =\$ 4500 \\
& \therefore \text { Marked price }=\$ 4500
\end{aligned}
$$

(b) Percentage discount $=70 \%$

Discount of $70 \%=30 \%$ of original value

$$
\begin{aligned}
\therefore 30 \% & =\$ 55.80 \\
\therefore 1 \% & =\$ 55.80 \div 30 \\
& =\$ 1.86 \\
\therefore 100 \% & =\$ 1.86 \times 100 \\
& =\$ 186
\end{aligned}
$$

\therefore Marked price $=$| $\quad \$ 186$ |
| :---: |
| $\cdots \cdots \cdots$ |

What else can you do?

Page 36 questions

Profit and loss

8 C Percentage discount $=50 \%$
d Percentage discount $=20 \%$

Discount of $50 \%=50 \%$ of original value
Discount of $20 \%=80 \%$ of original value

$$
\begin{aligned}
\therefore 50 \% & =\$ 97.50 \\
\therefore 1 \% & =\$ 97.50 \div 50 \\
& =\$ 1.95 \\
\therefore 100 \% & =\$ 1.95 \times 100 \\
& =\$ 195
\end{aligned}
$$

$$
\therefore 80 \%=\$ 455.60
$$

$$
\therefore 1 \%=\$ 455.60 \div 80
$$

$$
=\$ 5.695
$$

$$
\therefore 100 \%=\$ 5.695 \times 100
$$

$$
=\$ 569.50
$$

$$
\therefore \text { Marked price }=\$ 195.00
$$

\therefore Marked price $=\$ 569.50$
(9) Markup of $20 \%=1.2 \times \$ 40$

$$
=\$ 48.00
$$

A following discount of $15 \%=0.85 \times \$ 48.00$

$$
=\$ 40.80
$$

\therefore sale price $=\$ 40.80$, so the retailer made a profit of $\$ 0.80$.

Page 37 questions

Profit and loss

10

$$
\text { (a) } \begin{aligned}
\text { Markup of } 38 \% & =1.38 \times \$ 200 \\
& =\$ 276.00
\end{aligned}
$$

\therefore marked price $=\$ 276.00$
(b) Discount $=\$ 76$
\therefore Percentage discount $=(\$ 76 \div \$ 276) \times 100 \%$
$\approx 27.5 \%$ (to 1 d.p.)

11
(a) Cost price $=1.125 \times \$ 890$

$$
=\$ 1001.25
$$

(b) Labelled price $=1.2 \times \$ 1001.25$

$$
=\$ 1201.50
$$

$\therefore \$ 1001.25-\$ 890$

$$
=\$ 111.25 \text { loss on the sale } \quad \begin{aligned}
& \text { Discount }=\$ 1201.50-\$ 890 \\
&=\$ 311.50 \\
& \therefore(\$ 311.50 \div \$ 1001.25) \times 100 \% \\
&=31.1 \% \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

What else can you do?

Page 37 questions

Profit and loss

(12)
(a) Marked price $=1.36 \dot{3} \times \$ 72.50$

$$
\begin{aligned}
& =\$ 98.841 \dot{6} \\
& =\$ 98.84 \text { (to } 2 \text { d.p.) }
\end{aligned}
$$

(b) Minimum sale price $=1.1725 \times \$ 72.50$
$=\$ 85.00625$
= \$85 (nearest whole dollar)

C Minimum discount $=(\$ 98.84-\$ 85)$

$$
=\$ 13.84
$$

Maximum percentage discount $=(\$ 13.84 \div \$ 98.84) \times 100 \%=14.00242817 \approx 14 \%$

Page 38 questions

More applications of percentage calculations

1
(a) Protein per $100 \mathrm{~g}=8.0 \mathrm{~g}$
(b) Protein recommended $=(70 \times 0.8)$

$$
=56 \mathrm{~g}
$$

$\therefore 8 \%$ protein

C $56 \mathrm{~g} \div 0.4 \mathrm{~g}=140$ servings!
(d) $140 \times 3.8 \mathrm{~g}=532 \mathrm{~g}$
e For Protein, minimum daily requirement should account for 32%.

$$
\begin{aligned}
\therefore 32 \% & =56 \mathrm{~g} \\
& =56 \mathrm{~g}
\end{aligned}
$$

\therefore recommended amount of Carbohydrates eaten $=\frac{50}{32} \times 56 \mathrm{~g}=87.5 \mathrm{~g}$
This is not a healthy option as it means the person consumes approximately 6 times the recommended daily intake of carbohydrates.
(2) $24 \frac{3}{4} \%=145$ days

$$
\begin{aligned}
\therefore 1 \% & =145 \div 24.6 \text { days } \\
& =5.894308943 \text { days }
\end{aligned}
$$

$$
\begin{aligned}
\therefore 200 \% & =5.894308943 \times 200 \text { days } \\
& =1178.861789 \ldots \text { days } \\
& \approx 1179 \text { days }
\end{aligned}
$$

What else can you do?

Page 39 questions

More applications of percentage calculations

(3) Tree height after 1 year $=1.2025 \times 14 \mathrm{~m}$

$$
=16.835 \mathrm{~m}
$$

(b) Tree height after 2 years $=1.2025 \times 16.835 \mathrm{~m}$

$$
=20.2440875 \mathrm{~m}
$$

$$
\begin{aligned}
\therefore 20.2440875-16.835 & =3.4090875 \mathrm{~m} \\
& \approx 3.41 \mathrm{~m} \text { (to } 2 \text { d.p.) }
\end{aligned}
$$

C Percentage growth after 2 years $=(3.41 \div 14) \times 100 \%$

$$
\begin{aligned}
& =24.35714286 \\
& =24.4 \% \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

d Total growth 3 years from now $=1.2025 \times 20.2440875 \mathrm{~m}$

$$
=24.34351522 \mathrm{~m}
$$

$<25 \mathrm{~m}$ so no, the tree will not be cut down in 3 years time.
e The tree height is increasing each year, so 20.25% of the height is also increasing, so after four years it is more than a 100% increase, even though $4 \times 20.25 \%$ only $=81 \%$.
(4) Intially 50 m

After first burst of hot air, height above ground $=1.31 \times 50=65.5 \mathrm{~m}$
After a further 20 minutes, height above ground $=65.5 \mathrm{~m}-17 \mathrm{~m}=48.5 \mathrm{~m}$
After second burst of hot air, height above ground $=1.288 \dot{3} \times 48.5=62.48416667 \ldots \mathrm{~m}$
\therefore Overall change in height $=62.48416667-50=12.48 \mathrm{~m}$ (to 2 d.p.)
\therefore Overall percentage change $=(12.48 \div 50) \times 100 \%=25 \%$ (nearest whole percentage)

